"Anyone who has never made a mistake has never tried anything new."
Einstein.



Friday, July 29, 2011

Solar cells printed on paper may make power more portable


The next generation of solar cells may be printed on ordinary paper.
Engineers at the Massachusetts Institute of Technology have created ultrathin paper cells that gather enough juice to power an LCD clock and can be glued to a briefcase, stapled to a hat or folded into a pocket. The research is a first step toward a cheap and lightweight source of renewable energy that, within two years, may be used for everything from charging an iPad to warming up clothing, researchers said.
"Rather than confining solar power to rooftops or solar farms, paper photovoltaics can be used virtually anywhere, making energy ubiquitous," said Karen Gleason, associate dean of engineering research at MIT in Cambridge, Mass., and leader of the team that produced the cells.
Paper cells would have the potential to create a new market based on the popularity of low- power electronic devices that are now mostly fed by batteries, such as mobile phones

Friday, July 15, 2011

brain-controlled prostheses

The government’s National Science Foundation will work on robotic devices that interact with, assist and understand the nervous system,’ said director Yoky Matsuoka, Washington University’s associate professor of computer science and engineering.It will combine advances in robotics, neuroscience, electromechanical devices and computer science to restore or augment the body’s ability for sensation and movement.’Researchers will develop technologies for amputees, patients with spinal-cord injuries and those with cerebral palsy, stroke, Parkinson’s disease or age-related neurological disorders.
‘We already see chips that interface with neural systems and then stimulate the right muscles based on that information, and we have purely mechanical lower-limb prostheses that are fast enough to compete in the Olympics,’ said Matsuoka.
‘Our centre will use sensory and neural feedback to give these devices much more flexibility and control.’
Early systems might involve remote or wearable devices that help to guide rehabilitation exercises to remap brain signals and restore motor control.
Ultimately, the researchers hope to develop implantable prosthetics that are controlled by brain signals and include sensors that shuttle information back to wearers so they can react to their environment — creating robotic systems that are truly integrated with the body’s nervous system.
‘I think the really interesting development is literally where the silicon meets the collagen,’ said Thomas Daniel, the centre’s deputy director and a Washington biology professor. ‘It remains an open challenge — one of the current problems in neural engineering.’